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Alkane functionalization in a homogeneous medium is an
important and challenging process which involves either carbon-
hydrogen activation (CHA)1 or carbon-carbon activation (CCA)2

with organic, inorganic and organometallics reagents. Although
aliphatic C-C bonds are weaker than aliphatic C-H bonds, CCA
of alkanes is much less reported due to the steric hindrance of the
C-C bond by the attack of a transition metal complex.3

Cyclooctane (c-octane) is a relatively unstrained cycloalkane and
therefore serves as a commonly investigated substrate in alkane
functionalization, mostly involving CHA. Some examples of CHA
of c-octane are the iridium(I) pincer dihydride-catalyzed dehydro-
genation to c-octene,4a the FeCl3-catalyzed aerobic oxidation to
c-octanol and c-octanone,4b and the MnO2-catalyzed bromination
to c-octyl bromide.4c Examples of CCA of c-octane are rarely
reported. A CCA of c-octane in a heterogeneous medium requires
a very high reaction temperature of 530 °C and consequently results
in both CHA and CCA.3a An oxidative CCA of c-octane catalyzed
by N-hydroxyphthalides/Co(II)/Mn(II) at 100 °C in 14 h gives R,ω-
dicarboxylic acids in 2% yield only.3b

We have recently discovered the base-promoted CHA of alkane
with Rh(III) porphyrin5 as well as the aliphatic CCA of nitroxides
by Rh(II) porphyrin.6 We now report the selective aliphatic CCA
of c-octane by rhodium(III) porphyrin hydride to give a high yield
of rhodium porphyrin n-octyl under mild reaction conditions and
the mechanistic studies identifying the unique catalytic role of Rh(II)
porphyrin (Scheme 1).

Initially, c-octane was found to react poorly with Rh(ttp)Cl (ttp
)5,10,15,20-tetratolylporphyrinato dianion) to give Rh(ttp)(c-octyl)
1 and Rh(ttp)(n-octyl) 2 in 5% and 8% yields, respectively (eq 1).
A 72% yield of Rh(ttp)Cl was recovered, and a trace amount of
Rh(ttp)H 3 was observed. Both CHA and CCA products formed,
but the reaction was inefficient. When K2CO3 (10 equiv) was
added,7 Rh(ttp)Cl was consumed in 7.5 h and Rh(ttp)(n-octyl) 2
and Rh(ttp)H 3 were obtained in 33% and 58% yields, respectively.
The CCA product 2 is the formal 1,2-addition product of Rh(ttp)H
into c-octane. The structures of 1 and 2 were confirmed by
independent syntheses.8 2 was further characterized by X-ray
crystallography (Figure 1).

To investigate whether the CHA product is an intermediate for
CCA,9 Rh(ttp)(c-octyl) 1 was heated in benzene-d6 in both neutral

and basic conditions separately. Without K2CO3, Rh(ttp)(c-octyl)
1 gave Rh(ttp)(n-octyl) 2, Rh(ttp)H 3, and c-octene 4 in 10%, 76%,
and 36% yields, respectively after 21 h (eq 2, Figure S1, Table
S1). In the presence of K2CO3 (10 equiv), Rh(ttp)(n-octyl) 2 was
isolated in a higher yield of 21% in 16 h (eq 3, Figure S2, Table
S2). However, both reactions were low yielding and incomplete.
Therefore, the CHA product is not a major intermediate leading to
the CCA product.

To enhance the CCA reaction of Rh(ttp)Cl with c-octane based
on mechanistic understandings, the reaction was monitored by 1H
NMR spectroscopy in a sealed NMR tube (eq 4, Figure S3, Table
S3). Initially, Rh(ttp)Cl was first converted to Rh2(ttp)2 5.5 5 then
slowly and completely reacted with the gradual formation of
Rh(ttp)H 3. Finally, Rh(ttp)(n-octyl) was generated in prolonged
heating and still, Rh(ttp)H was consumed slowly and mostly
remained unreacted. Therefore, both Rh2(ttp)2 and Rh(ttp)H are
possible intermediates. The observed 1H NMR upfield signals at δ
) -5 to 1 ppm (Figure S4) were assigned to Rh(ttp)-incorporated
c-octene oligomers (about 15% NMR yield), which indicate the
occurrence of RhII(ttp)-initiated oligomerization of c-octene.10

To investigate the intermediacy of Rh(ttp)H and Rh2(ttp)2,
Rh(ttp)H 3 and Rh2(ttp)2 5 were then separately reacted with
c-octane. Rh(ttp)H 3 indeed reacted with c-octane at 120 °C in

Scheme 1. CCA of c-Octane with MH

Figure 1. ORTEP presentation of Rh(ttp)(n-octyl) 2 (30% probability
displacement ellipsoids). Rh-C ) 2.03 Å, R ) 0.0522.
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15 h to give Rh(ttp)(n-octyl) 2 selectively, though in only 21%
yield, and was also recovered in 73% yield (eq 5). As Rh(ttp)H
underwent slow dehydrogenative dimerization to give 6% yield of
Rh2(ttp)2 at 120 °C in 1 day, similar to the report by Wayland and
co-workers (eq 6),11 the small amount of Rh2(ttp)2 formed in eq 5
likely facilitates the 1,2-addition of Rh(ttp)H into c-octane.12 The
other possible intermediate Rh2(ttp)2 5 was also reacted with
c-octane. Rh(ttp)(c-octyl) 1, Rh(ttp)(n-octyl) 2, and Rh(ttp)H 3 were
formed in 41%, 4%, and 46% yields, respectively (eq 7) with a
very low yield of CCA product. Therefore, both Rh(ttp)H 3 and
Rh2(ttp)2 5 gave low yielding reactions and are likely only minor
reaction intermediates by themselves.

Based on the mechanism of the RhII-catalyzed insertion of
Rh(oep)H (oep ) octylethylporphyrin dianion) into styrene reported
by Halpern et al.,12 we proposed that the CCA, being a 1,2-addition
reaction, is catalyzed by RhII (Scheme 2). Rh2(ttp)2 5 formed from
thermolysis of Rh(ttp)H initially undergoes homolysis to give
RhII(ttp) (eqs 8 and 9).11 RhII(ttp) then reacts with c-octane in
parallel CHA (pathway iii, eq 10) and CCA (pathway iv, eq 11).
RhII(por) (por ) porphyrinato dianion) has been shown to undergo
CHA with alkane to give Rh(por)R and Rh(por)H.5,13 For the CCA
pathway, RhII(ttp) can cleave the C-C bond of c-octane to generate
the alkyl radical 6 (pathway iv, eq 11) which can also reverse back
rapidly.14 6 can then abstract a hydrogen atom from the weak
(ttp)Rh-H bond15a to form a strong alkyl C-H bond,15b providing
the driving force of the reaction (pathway v). The proposed
mechanism can be validated qualitatively by increasing the ratio
of Rh(ttp)H/Rh2(ttp)2 for more efficient trapping of 6 to 2 (Table
1, eq 12).

Indeed, mixtures of Rh(ttp)H and Rh2(ttp)2 were more efficient
reagents and enhanced the total yields up to 79% (Table 1, entries

2-4 vs 1). The selectivity toward CCA was further enhanced by
an increase of the Rh(ttp)H:Rh2(ttp)2 ratio. The CCA of c-octane
with the mixture of Rh(ttp)H/Rh2(ttp)2 in a 2:1 ratio gave Rh(ttp)(c-
octyl) and Rh(ttp)(n-octyl) in 60% and 18% yields, respectively
(Table 1, entry 2). When the Rh(ttp)H/Rh2(ttp)2 ratio increased to
5:1, the yield of Rh(ttp)(n-octyl) increased to 26% yield but that
of Rh(ttp)(c-octyl) decreased to 53% yield (entry 3). Rh(ttp)(n-
octyl) was selectively obtained in 73% yield from the reaction with
the 10:1 ratio of Rh(ttp)H/Rh2(ttp)2 (entry 4). The aliphatic CCA
of c-octane was thus achieved successfully with the RhII-catalyzed
1,2-addition of Rh(ttp)H.

The sterically more hindered Rh(tmp) was not effective for CCA
(tmp ) 5,10,15,20-tetramesitylporphyrinato dianion). When the
mixture of Rh(tmp)H and RhII(tmp) (10:1) was reacted with
c-octane at 120 °C for 15 h, no reaction occurred and 90% yield of
Rh(tmp)H was recovered (eq 13). RhII(tmp) only underwent CHA
with c-octane to give Rh(tmp)H and c-octene in 86% and 40%
yields, respectively (eq 14). The formation of c-octene likely results
from the CHA product Rh(tmp)(c-octyl) which rapidly undergoes
facile �-hydride elimination to give c-octene and Rh(tmp)H
(Scheme 3). Indeed, the attempted synthesis of Rh(tmp)(c-octyl)
by reductive alkylation (NaBH4/c-octyl bromide) gave Rh(tmp)H
and c-octene in 89% and 77% yields, respectively.

In conclusion, we have discovered the mild, selective RhII-
catalyzed 1,2-addition of Rh(ttp)H to c-octane via an aliphatic CCA.
Further studies are ongoing.
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